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Abstract
The performance of c-Si/a-Si:H heterojunction solar cells with different emitter layers is studied by using the automat for 
simulation of heterostructures (AFORS-HET) tool. The a-Si:H(p) layer in the Ag/ZnO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-
Si:H(n)/Ag heterojunction solar cell is replaced by an nc-Si:H(p), µc-Si:H(p), a-SiC:H(p), and a-SiGe:H(p) emitter layer. 
The performance of the c-Si/a-Si:H heterojunction solar cell is evaluated by varying the bandgap of these emitter layers. An 
open-circuit voltage (Voc) of 763.3 mV, short-circuit current density (Jsc) of 41.89 mA/cm2), fill factor (FF) of 85.61%, and 
efficiency (ɳ) of 27.39% were obtained at 1.8 eV for the a-Si:H(p) emitter layer. The solar cell performance is improved by 
replacing the a-Si:H(p) layer with an nc-Si:H(p) layer, resulting in estimated values of 764.8 mV, 43.27 mA/cm2, 85.54%, 
and 28.27% for Voc, Jsc, the FF, and ɳ, respectively, at 1.9 eV. The c-Si/a-Si:H heterojunction solar cell with the µc-Si:H(p) 
emitter having a bandgap of 1.5 eV shows a good improvement in performance with Voc, Jsc, FF, and ɳ values of 764.8 mV, 
42.75 mA/cm2, 85.82%, and 28.06%, respectively. The wide bandgap and low absorption coefficient of the a-SiC:H emitter 
layer improve the open-circuit voltage (764.8 mV) as well as short-circuit density (42.69 mA/cm2) and thereby the efficiency 
(27.93%) compared with the a-Si:H(p) emitter layer. The estimated results for the c-Si/a-Si:H heterojunction solar cells having 
an a-SiGe:H emitter layer reveal poor performance at the low bandgap, which is improved as the bandgap of the a-SiGe:H 
layer is increased. The best performance with a Voc of 764.8 mV, Jsc of 42.96 mA/cm2, FF of 85.54%, and ɳ of 28.09% at 
1.7 eV is obtained for the a-SiGe:H layer.

Keywords c-Si/a-Si:H heterojunction solar cells · nc-Si:H(p) · µc-Si:H(p) · a-SiC:H(p) · a-SiGe:H(p) · Simulation

1 Introduction

The emitter layer plays a significant role in c-Si/a-Si:H het-
erojunction solar cells [1–3]. This layer transmits light over 
a broad wavelength range to the c-Si absorber layer in order 
to generate free electron–hole charge carriers [3]. The use 
of a suitable emitter layer results in a sufficient electric field 
and the band bending that is required for c-Si/a-Si:H hetero-
junction solar cells to separate and drive the charge carriers 
towards the metal contacts [4, 5]. To fabricate and improve 
the performance of c-Si/a-Si:H heterojunction solar cells, it 
is important to understand and optimize the microstructure, 

bandgap, thickness, doping concentration, electrical proper-
ties, etc.

For c-Si/a-Si:H heterojunction solar cells, the absorption 
losses at the illuminated side are a serious issue due to the 
high absorption coefficient of a-Si:H [1, 6]. The efficiency of 
c-Si/a-Si:H heterojunction solar cells can thus be improved 
by reducing the optical absorption losses [7]. To achieve 
this, materials with low absorption coefficient or a wide 
bandgap have been proposed for use in c-Si/a-Si:H hetero-
junction solar cells [8].

Several materials have been applied as the emitter layer 
in solar cells, including hydrogenated amorphous silicon 
(a-Si:H) [6, 7, 9, 10], hydrogenated nanocrystalline silicon 
(nc-Si:H) [11, 12], hydrogenated microcrystalline silicon 
(µc-Si:H) [11, 13–15], hydrogenated amorphous silicon 
carbide (a-SiC:H) [14, 16–18], hydrogenated amorphous 
silicon germanium (a-SiGe:H) [14, 15, 18–21], etc. Other 
than silicon alloys, molybdenum oxide, molybdenum 
sulfide, and other organic materials have been also used 
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as the emitter layer in solar cells [22–24]. The a-Si:H has 
been extensively explored by many researchers due to the 
remarkable properties of this material [10, 25–27]. How-
ever, very few researchers have studied the use of nc-Si:H, 
µc-Si:H, a-SiC:H, and a-SiGe:H emitter layers in solar cells 
[13, 17, 19, 28–30]. These materials have been used as the 
emitter/window layer by increasing the optical bandgap 
of these materials through the addition of hydrogen atoms 
[31]. These hydrogen atoms improve the microstructure and 
reduce the coordination defects in the material [31]. How-
ever, nc-Si:H, µc-Si:H, a-SiC:H, and a-SiGe:H have mostly 
been used in p–i–n and silicon tandem solar cells but very 
less in c-Si/a-Si:H heterojunction solar cells [4, 19, 32].

In 1983, Okuda et al. first reported a-Si/poly c-Si het-
erojunction solar cell, with efficiency of 12% [33]. In 1992, 
researchers at Sanyo developed a new c-Si/a-Si:H hetero-
junction (HIT) solar cell technology, achieving a high effi-
ciency value of 18.1% [34]. After this, record efficiency 
was reported by Sanyo based on a breakthrough Si photo-
voltaic technology, many research groups were attracted 
towards working on c-Si/a-Si:H heterojunction solar cells 
[1, 35]. In 2014, Sanyo reported the highest efficiency of 
25.6% [6] with an open-circuit voltage of 750 mV on n-type 
c-Si substrates using the heterojunction with intrinsic thin 
layer (HIT) solar cell structure [7]. At present, the highest 
reported efficiency is 26.7% on n-type [36, 37] and 26.1% on 
p-type c-Si wafers, using interdigitated back-contact silicon 
heterojunction (IBC-SHJ) solar cell technology [38]. Solar 
cells based on amorphous silicon with efficiency of 8–10% 
are reported in literature with a-Si:H emitter [39]. Efficiency 
values of 11.9%, 12.7%, and 14% have been reported for 
microcrystalline silicon, a-Si/nc-Si, and a-Si/nc-Si/nc-Si 
thin-film solar cells [39], whereas 12.3% has been reported 
for a-Si/nc-Si tandem solar cells [39]. However, a large num-
ber of processing parameters, such as the thickness, doping, 
and bandgap of the a-Si:H and TCO layers as well as metal 
contacts must be optimized to fabricate c-Si/a-Si:H hetero-
junction solar cells. It is a huge task to study the effect of 
each parameter on the solar cell performance experimentally.

As the efficiency of solar cells has been improved, many 
researchers have worked on simulations of solar cells. The 
results have been implemented to improve the performance. 
Many researchers have designed different structures and 
studied the effect of varying the thickness of the layers, the 
bandgap, the interface defect states, and the doping concen-
tration [4, 40, 41]. Antwi et al. achieved a simulated effi-
ciency of 29.19% by optimizing the defect density and fixed 
interface charges [42]. Dwivedi et al. achieved a simulated 
efficiency of 27% by designing layers with different thick-
nesses in various structures [10]. Arti et al. reported a high 
efficiency value of 24.14% for c-Si/μc-Si:H heterojunction 
solar cells [43]. Efficiency values of 9.35% and 17% have 
been reported for a-Si:H/nc-Si:H and µc-Si:H thin-film solar 

cells, respectively, based on simulations [12, 13]. Efficiency 
values of 15% and 17% have been reported for a-Si:H/
µc-Si:H and a-SiCH/a-SiGe:H/µc-Si:H thin-film solar cells, 
respectively [15]. The incorporation of carbon atoms into the 
Si network can improve the performance of different type 
of solar cells, with a reported value of 10% for a-SiC:H/a-
Si:H/a-SiGe:H solar cells [18]. Some research groups have 
compared simulation and experimental results for differ-
ent types of solar cells [29, 40, 44, 45]. It is observed that 
experimental results are closely comparable to simulated 
results for solar cells.

Simulation tools can provide enhanced understanding 
of the effects of material properties on the performance of 
solar cells without high costs in terms of investment, risk, 
and time. AFORS-HET is one of the best simulation tools 
to study c-Si/a-Si:H heterojunction solar cells [27, 46–50]. 
We have used primarily optimized device results from simu-
lations to fabricate single-sided c-Si/a-Si:H heterojunction 
solar cells experimentally [51]. Initially, we analyze how 
deposition parameters such as the doping density, thickness, 
bandgap, interface defect density, etc. affect the device per-
formance and understand the different conditions for device 
fabrication to improve the efficiency.

In this work, the performance of c-Si/a-Si:H heterojunc-
tion solar cells is studied using different emitter layers made 
of a-Si:H, nc-Si:H, µc-Si:H, a-SiC:H, and a-SiGe:H, by 
applying the AFORS-HET simulation tool. The bandgap of 
each emitter layer is varied to study and improve the perfor-
mance of the c-Si/a-Si:H heterojunction solar cells.

2  Simulation details

The AFORS-HET tool is used to model c-Si/a-Si:H hetero-
junction solar cells. Solar radiation with the AM1.5 spec-
trum an a power density of 100 mW/cm2 together with flat-
band metal contacts are used in the simulations. The input 
parameters for the c-Si/a-Si:H heterojunction solar cells are 
presented in Table 1. The density of states distribution for all 
the layers is taken from standard references [4, 5, 10, 11, 28, 
46, 52, 53]. The other parameters are set based on the preset 
values in the AFORS-HET software [10, 27].

A schematic diagram of the c-Si/a-Si:H heterojunction 
solar cell structure is shown in Fig. 1. The a-Si:H(p) layer is 
replaced by emitter layers made of different materials, viz. 
nc-Si:H(p), µc-Si:H(p), a-SiC:H(p), and a-SiGe:H(p) in the 
c-Si/a-Si:H structure shown in Fig. 1. The bandgap of the 
different emitter layers is varied to evaluate its effect on the 
performance of the solar cell. The thickness of all the a-Si:H, 
nc-Si:H(p), µc-Si:H(p), a-SiC:H(p), and a-SiGe:H(p) layers 
was kept at 5 nm. A schematic band-bending diagram of 
the c-Si/a-Si:H heterojunction solar cells is shown in Fig. 2.

Author's personal copy
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3  Results and discussion

3.1  The c‑Si/a‑Si:H heterojunction solar cell 
with an a‑Si:H(p) emitter layer

Figure 3 shows the solar cell parameters as a function 
of the bandgap of the a-Si:H(p) emitter layer. The opti-
cal bandgap of the a-Si:H(p) layer is varied from 1.6 to 
1.85 eV in steps of 0.04 eV, and the solar cell parameters 

Table 1  The values of the input parameters used in the presented simulations of c-Si/a-Si:H heterojunction solar cells

Parameter c-Si(n) a-Si:H(n) a-Si:H(i) a-Si:H(p) nc-Si:H(p) µc-Si:H(p) a-SiC:H(p) a-SiGe:H(p)

Thickness 250 µm 5 nm 5 nm 5 nm 5 nm 5 nm 5 nm 5 nm
Dielectric constant 11.1 11.1 11.1 11.1 11.9 11.9 11.9 14
Electron affinity (eV) 4.05 3.9 3.9 3.9 3.9 3.9 3.9 4.01
Bandgap (eV) 1.12 1.72 1.72 Variable Variable Variable Variable Variable
Effective conduction-band density  (cm−3) 2.8 × 1019 6.9 × 1020 6.9 × 1020 6.9 × 1020 3.0 × 1019 3.0 × 1019 2.5 × 1020 1.0 × 1020

Effective valence-band density  (cm−3) 2.8 × 1019 1.2 × 1021 1.2 × 1021 1.2 × 1021 3.0 × 1019 3.0 × 1019 2.5 × 1020 1.0 × 1020

Electron mobility  (cm2 V−1 s−1) 1321 7 7 7 60 50 10 60
Hole mobility
(cm2 V−1 s−1)

461 1 1 1 4 5 1 10

Acceptor concentration  (cm−3) 0 0 0 6.1 × 1021 3.0 × 1019 1.0 × 1019 3.0 × 1020 1 × 1019

Donor concentration  (cm−3) 5 × 1016 1.7 × 1021 0 0 0 0 0 0
Thermal velocity of electrons (cm s−1) 107 107 106 107 107 107 107 107

Thermal velocity of holes (cm s−1) 107 107 106 107 107 107 107 107

Layer density (g cm−3) 2.328 2.328 2.328 2.328 2.328 2.328 2.328 2.328

Fig. 1  A schematic of the structure of the c-Si/a-Si:H heterojunction 
solar cells

Fig. 2  A band-bending diagram of the c-Si/a-Si:H heterojunction 
solar cells with decreasing (Eg↓) and increasing (Eg↑) bandgap of the 
emitter layer

Fig. 3  The solar cell parameters as functions of the bandgap of the 
a-Si:H(p) emitter layer
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Voc, Jsc, FF, and ɳ are estimated. The range of bandgap val-
ues of the emitter layer used in the simulations is closely 
comparable to the values of experimentally deposited 
a-Si:H films. The thickness of all the a-Si:H layers is 
kept constant of 5 nm. The bandgap of the a-Si:H(i) and 
a-Si:H(n) layer is fixed at 1.72 eV. The open-circuit volt-
age is constant in the energy range from 1.6 to 1.85 eV. 
The Jsc values increase from 41.82 to 41.91 mA/cm2 as the 
bandgap of the emitter layer is increased. High FF values 
of 86.03% and 86.04% are observed at 1.6 and 1.64 eV, 
respectively, but the FF decreases at 1.68 eV and then 
increases slightly with further increase in the bandgap. An 
FF value of 85.61% is observed at 1.8 eV for the a-Si:H(p) 
layer. As a result, an efficiency of 27.47% is obtained at 
1.64 eV, decreasing to 27.33%. An efficiency of 27.38% 
is observed at 1.8 eV for the p-layer. A high efficiency is 
observed at 1.64 eV for the a-Si:H(p) layer, but the effi-
ciency value is reported for a bandgap of 1.8 eV, since 
this is the value reported experimentally for a-Si:H films. 
An efficiency of 27.47% is obtained at 1.64 eV, but it then 
decreases slightly to 27.38% at 1.8 eV; That is, the effi-
ciency increases slightly initially but then decreases. This 
could be due to the greater number of photons allowed to 
enter the c-Si wafer to generate free electron–hole pairs 
through the emitter layer when the bandgap of the emitter 
layer is low, which results in the efficiency improvement. 
With a slight increase in the bandgap, some of the photons 
are absorbed by the emitter layer, resulting in a reduction 
in the photocurrent.

3.2  The c‑Si/a‑Si:H heterojunction solar cells 
with an nc‑Si:H(p) emitter layer

Hydrogenated nanocrystalline silicon (nc-Si:H) has a large 
bandgap value, lower defect density, and higher conductiv-
ity compared with a-Si:H films. These properties make nc-
Si:H(p) a suitable material for the emitter layer in c-Si/a-
Si:H heterojunction solar cells. The high bandgap and and 
less-defective nature of this emitter layer improve the short-
circuit density and open-circuit voltage, respectively [3, 54]. 
Figure 4 shows the solar cell parameters as function of the 
bandgap of the nc-Si:H(p) layer. The bandgap of the nc-
Si:H(p) is varied from 1.78 to 1.9 eV, and the Voc, Jsc, FF, 
and ɳ of the solar cells are estimated. Voc does not change 
as the bandgap is increased in the range of 1.78–1.9 eV. 
The observed Voc (764.8 mV) is about 1.5 mV higher than 
that obtained (763.3 mV) with the a-Si:H(p) emitter layer, 
since the defect density in the bulk and on the surface of 
the nc-Si:H as well as at the interface is lower compared 
with a-Si:H(p). Jsc improves as the bandgap of the p-layer 
is increased. It is observed that Jsc improves even at a low 
bandgap of 1.78 eV for the nc-Si:H(p) layer. Jsc is enhanced 
by about 2 mA/cm2 as compared with the a-Si:H(p) emitter 

layer. A high Jsc value of 43.27 mA/cm2 is obtained with 
the nc-Si:H layer having a bandgap of 1.9 eV. This can be 
attributed to the fact that the high-bandgap emitter allows 
the transmission of high-energy photons to be absorbed in 
the c-Si and thus generate a large number of electron–hole 
pairs. The other reason is that the electrical conductivity of 
the nc-Si:H(p) is higher than that of the a-Si:H(p) layer. The 
FF value does not change as the bandgap is increased, while 
the efficiency increases. A high efficiency value of 28.27% is 
observed for the nc-Si:H(p) layer with a bandgap of 1.9 eV.

3.3  The c‑Si/a‑Si:H heterojunction solar cells 
with a µc‑Si:H(p) emitter layer

Hydrogenated microcrystalline silicon (µc-Si:H) is one of 
the prominent materials for fabrication of solar cells. It’s 
remarkable properties such as high conductivity, lower 
coordination defect density, low absorption coefficient, 
and suitable bandgap make µc-Si:H(p) applicable as the 
emitter layer in solar cells [4, 54]. Figure 5 shows the Voc, 
Jsc, FF, and ɳ values of the solar cells as a function of the 
bandgap of the µc-Si:H(p) layer, revealing low values of 
739.8 mV, 42.64 mA/cm2, 79.78%, and 25.17%, respectively, 
at 1.25 eV. The Voc increases from 739.8 m to 763.3 mV in 
the range from 1.25 to 1.35 eV, respectively. At 1.4 eV, Voc 
increases to 764.8 mV but saturates with further increase 
in the bandgap of the µc-Si:H(p) layer. Jsc increases con-
tinuously from 42.64 to 42.78 mA/cm2 as the bandgap of 
the p-layer is increased in the range from 1.25 to 1.55 eV. 
The FF increases from 79.78% to 85.82% as the bandgap is 

Fig. 4  The solar cell parameters as functions of the bandgap of the 
nc-Si:H(p) emitter layer
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increased from 1.25 to 1.5 eV but then decreases to 85.41% 
at 1.55 eV. A maximum FF value of 85.82% is found at 
1.5 eV for the µc-Si:H(p) layer. A low efficiency of 25.17% 
is observed at 1.25 eV. This efficiency increases as the band-
gap of the emitter layer is increased, reaching 28.06% at 
1.5 eV, after which ɳ decreases to 27.94% when the bandgap 
of the p-layer is 1.55 eV. For low bandgap values, the major-
ity carriers from c-Si(n) can easily enter the µc-Si:H(p) and 
recombine, resulting in a low open-circuit voltage of the 
solar cell. As the bandgap of the µc-Si:H(p) is increased, the 
majority carrier electrons in the c-Si(n) see a high barrier 
height to enter the µc-Si:H(p) layer and thus move towards 
the backside a-Si:H(n) layer, resulting in a significant reduc-
tion in the recombination losses. This leads to an improve-
ment in the Voc and thereby the efficiency of the c-Si/a-Si:H 
heterojunction solar cells.

3.4  The c‑Si/a‑Si:H heterojunction solar cells 
with an a‑SiC:H(p) emitter layer

Hydrogenated amorphous silicon carbide (a-SiC:H) is very 
useful as a window layer for solar cells. This window layer 
transmits the maximum number of incident photons to allow 
them to reach the c-Si wafer and thus generate free charge 
carriers. Indeed, a-SiC:H has a wide bandgap, high electrical 
conductivity, high mobility, and low absorption coefficient 
[4, 31, 55]. The a-SiC:H layer is formed by adding carbon 
atoms to the a-Si:H network. The a-SiC:H layer also fixes 
the lattice mismatch between the transparent conducting 

oxide (ZnO) and the intrinsic a-Si:H layer. The wide band-
gap of the a-SiC:H layer also adjusts the band discontinuity 
between the valance band and conduction band. The varia-
tion of the solar cell parameters Voc, Jsc, FF, and ɳ is plotted 
as a function of the bandgap of the a-SiC:H(p) emitter layer 
in the range of 1.94–2.18 eV in Fig. 6. Voc does not change 
and remains constant in this energy range. However, Voc is 
enhanced by about 1.5 mV when using a-SiC:H(p) compared 
with a-Si:H(p), due to the reduced recombination density in 
the a-SiC:H(p) layer. Jsc does not change significantly, and 
a high value of Jsc is observed in the range of 2.02–2.1 eV. 
The Jsc values are improved by about 1 mA/cm2 compared 
with the a-Si:H(p) layer, due to the wider bandgap and low 
absorption coefficient of the a-SiC:H(p) layer. The FF values 
increase initially but then decrease at 2.14 and 2.18 eV for 
the a-SiC:H(p) layer. The best values of the FF (85.53%) 
and ɳ (27.93%) are observed at 2.1 eV for the a-SiC:H(p) 
emitter layer. In the case of a-SiC:H, the band discontinuity 
(barrier) increases as the bandgap of the layer is increased, 
which leads to recombination losses of charge carriers as 
well as the absorption of photons by the emitter layer. This 
could be the reason for the decrease in the efficiency of the 
c-Si/a-Si:H solar cells with the a-SiC:H emitter layer at a 
high bandgap.

3.5  The c‑Si/a‑Si:H heterojunction solar cells 
with an a‑SiGe:H(p) emitter layer

Hydrogenated amorphous silicon germanium (a-SiGe:H) is 
prepared by adding germanium (Ge) atoms to the a-Si:H 

Fig. 5  The solar cell parameters as functions of the bandgap of the 
µc-Si:H(p) emitter layer

Fig. 6  The solar cell parameters as functions of the bandgap of the 
a-SiC:H(p) emitter layer
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network. However, Ge material is not easily available and is 
also expensive. Germanium can be used in many electronic 
devices due to its low bandgap, which allows the absorp-
tion of broad spectral range. The bandgap of a-SiGe can 
be increased by adding hydrogen atoms into its structure. 
However, very few researchers have focused on a-SiGe:H 
material. Understanding the optical, structural, and electri-
cal properties of a-SiGe:H is therefore of great significance. 
In this work, the bandgap of a-SiGe:H is varied from 1.1 to 
1.7 eV to study the effect on the performance of the solar 
cells by estimating the Voc, Jsc, FF, and ɳ values (Fig. 7). 
Low Voc, FF, and efficiency values of 628.9 mV, 77.95%, 
and 20.26%, respectively, are obtained for a-SiGe:H with a 
bandgap of 1.1 eV. However, Voc, Jsc, FF, and ɳ increase to 
714.8 mV, 41.4 mA/cm2, 82.19%, and 24.33%, respectively, 
at 1.2 eV. The performance of the solar cell is improved 
as the bandgap of the a-SiGe:H emitter layer is increased. 
The Voc, Jsc, FF, and ɳ are enhanced to 758.6–763.3 mV, 
41.6–42.38, 85.26–85.57, and 26.91–27.68% in the range 
of 1.3–1.5 eV, respectively. The estimated Voc saturates at 
764.8 mV, and Jsc, FF, and ɳ values of 42.81 and 42.94 mA/
cm2, 85.5 and 85.54%, and 27.99 and 28.09% are found for 
the a-SiGe:H(p) layer with a bandgap of 1.6 and 1.7 eV, 
respectively. It is found that a-SiGe:H with a large bandgap 
can be used as the emitter layer to improve the performance 
of the c-Si/a-Si:H heterojunction solar cells.

These results indicate that the performance of the c-Si/
a-Si:H heterojunction cells is improved by using the nc-
Si:H(p), µc-Si:H(p), a-SiC:H(p), and a-SiGe:H(p) emitter 

layers. The high absorption coefficient, high defect density, 
and low conductivity of the a-Si:H(p) layer deteriorate the 
performance of the solar cell. In the case of the nc-Si:H(p) 
layer, the efficiency is improved due to the lower level of 
coordination defects, high bandgap, high conductivity, and 
improved microstructure of the nc-Si:H(p) layer. The wider 
bandgap and low absorption coefficient of the a-SiC:H(p) 
layer increase the short-circuit current density and open-
circuit voltage, as the wider bandgap of the a-SiC:H(p) 
allows more light to reach the c-Si(n) and thus generate a 
large number of free charge carriers, while also reducing 
the recombination losses. It is observed that the solar cells 
with a µc-Si:H(p) or a-SiGe:H emitter layer show poor per-
formance for low bandgaps due to charge carrier recombina-
tion, although their performance improves as the bandgap 
of the µc-Si:H(p) and a-SiGe:H layer is increased. The esti-
mated results suggest that emitter layers with a high band-
gap, high conductivity, and lower defect density are required 
to achieve c-Si/a-Si:H heterojunction solar cells with the 
best performance.

4  Conclusions

Ag/ZnO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n)/Ag 
solar cells are designed and evaluated using the AFORS-
HET simulation tool. The a-Si:H(p) layer in the c-Si/a-
Si:H heterojunction solar cell is replaced by an nc-Si:H(p), 
µc-Si:H(p), a-SiC:H(p), or a-SiGe:H(p) emitter layer. The 
performance of the c-Si/a-Si:H heterojunction solar cell is 
evaluated by varying the bandgap of these emitter layers. 
The best values of the open-circuit voltage (Voc) (763.3 mV), 
short-circuit current density (Jsc) (41.89 mA/cm2), fill fac-
tor (FF) (85.61%), and efficiency (ɳ) (27.39%) are obtained 
when using the a-Si:H(p) layer with a bandgap of 1.8 eV, 
which is closely comparable to the experimental value for 
a-Si:H film. It is found that the performance of the solar 
cell can be improved by replacing the a-Si:H(p) with an nc-
Si:H(p) layer, resulting in estimated values of 764.8 mV, 
43.27 mA/cm2, 85.54%, and 28.27% for Voc, Jsc, the FF, and 
ɳ, respectively, for the nc-Si:H(p) layer with a bandgap of 
1.9 eV. This improvement in the performance of the c-Si/a-
Si:H heterojunction solar cells results from the improved 
microstructure, high conductivity, and low defect density 
of the nc-Si:H(p) layer. The estimated values of Voc, Jsc, 
the FF, and ɳ are 764.8 mV, 42.75 mA/cm2, 85.82%, and 
28.06%, respectively, for the c-Si/a-Si:H heterojunction 
solar cell with a µc-Si:H(p) emitter layer having a bandgap 
of 1.5 eV. The observed enhancement in the performance 
is due to the reduced recombination losses resulting from 
the increased bandgap of the µc-Si:H(p) layer. The open-
circuit voltage (764.8 mV) as well as the short-circuit den-
sity (42.69 mA/cm2) and thereby efficiency (27.93%) are 

Fig. 7  The solar cell parameters as functions of the bandgap of the 
a-SiGe:H(p) emitter layer
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improved by the wide bandgap and low absorption coef-
ficient of the a-SiC:H(p) emitter layer compared with the 
a-Si:H(p) layer. It is observed that the solar cells with an 
a-SiGe:H(p) emitter layer show poor performance at low 
bandgap values, which is improved as the bandgap of the 
a-SiGe:H layer is increased. The best values obtained with 
the a-SiGe:H layer are a Voc of 764.8 mV, Jsc of 42.96 mA/
cm2, FF of 85.54%, and ɳ of 28.09%, at 1.7 eV. It is found 
that emitter layers with a high bandgap, high conductivity, 
and lower defect density are required to obtain c-Si/a-Si:H 
heterojunction solar cells with the best performance. These 
findings really help and encourage experimental research-
ers to optimize the properties of such layers to potentially 
design and fabricate solar cell devices and improve their 
performance without high costs in terms of time and money.
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